Package: gdim 0.1.0.9000

Alex Hayes

gdim: Estimate Graph Dimension using Cross-Validated Eigenvalues

Cross-validated eigenvalues are estimated by splitting a graph into two parts, the training and the test graph. The training graph is used to estimate eigenvectors, and the test graph is used to evaluate the correlation between the training eigenvectors and the eigenvectors of the test graph. The correlations follow a simple central limit theorem that can be used to estimate graph dimension via hypothesis testing, see Chen et al. (2021) <arxiv:2108.03336> for details.

Authors:Fan Chen [aut], Alex Hayes [cre, aut, cph], Karl Rohe [aut]

gdim_0.1.0.9000.tar.gz
gdim_0.1.0.9000.zip(r-4.5)gdim_0.1.0.9000.zip(r-4.4)gdim_0.1.0.9000.zip(r-4.3)
gdim_0.1.0.9000.tgz(r-4.4-any)gdim_0.1.0.9000.tgz(r-4.3-any)
gdim_0.1.0.9000.tar.gz(r-4.5-noble)gdim_0.1.0.9000.tar.gz(r-4.4-noble)
gdim_0.1.0.9000.tgz(r-4.4-emscripten)gdim_0.1.0.9000.tgz(r-4.3-emscripten)
gdim.pdf |gdim.html
gdim/json (API)
NEWS

# Install 'gdim' in R:
install.packages('gdim', repos = c('https://rohelab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/rohelab/gdim/issues

On CRAN:

3.48 score 6 stars 6 scripts 143 downloads 2 exports 36 dependencies

Last updated 1 years agofrom:9c9b98ee97. Checks:OK: 1 NOTE: 5 ERROR: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winNOTENov 05 2024
R-4.5-linuxNOTENov 05 2024
R-4.4-winNOTENov 05 2024
R-4.4-macNOTENov 05 2024
R-4.3-winNOTENov 05 2024
R-4.3-macERRORNov 05 2024

Exports:%>%eigcv

Dependencies:clicolorspacecrayondplyrfansifarvergenericsggplot2gluegtablehmsirlbaisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigprettyunitsprogressR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithr